Infinitely Many Eigenfunctions for Polynomial Problems: Exact Results
نویسندگان
چکیده
منابع مشابه
Existence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملGl-equivariant Modules over Polynomial Rings in Infinitely Many Variables
Consider the polynomial ring in countably infinitely many variables over a field of characteristic zero, together with its natural action of the infinite general linear group G. We study the algebraic and homological properties of finitely generated modules over this ring that are equipped with a compatible G-action. We define and prove finiteness properties for analogues of Hilbert series, sys...
متن کاملinfinitely many solutions for a class of p-biharmonic problems with neumann boundary conditions
the existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous neumann boundary conditions. using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous neumann boundary conditions, we obtain the result.
متن کاملInfinitely many two-variable generalisations of the Alexander-Conway polynomial
We show that the Alexander-Conway polynomial ∆ is obtainable via a particular one-variable reduction of each two-variable Links– Gould invariant LG , where m is a positive integer. Thus there exist infinitely many two-variable generalisations of ∆. This result is not obvious since in the reduction, the representation of the braid group generator used to define LG does not satisfy a second-order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2015
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2015/516159